

ОПЫТ ЭФФЕКТИВНОГО ПРИМЕНЕНИЯ БЕТАТРОНОВ ПРИ ПРОВЕДЕНИИ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТОЛСТОСТЕННЫХ ИЗДЕЛИЙ

tpu.ru

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Инженерная школа неразрушающего контроля и безопасности (ИШНКБ)

- Единственная в азиатской части России, объединившая научную и образовательную деятельность в области неразрушающего контроля (НК)
- Имеет более 50 лет опыта работы в области радиационного, акустикоэмиссионного, ультразвукового, теплового, электрического, электромагнитного, и других видов НК, основанных на разработках различных излучательных систем и приёмников излучения в сочетании с современными программами обработки изображений
- Достигла приоритетных результатов в области создания и производства различных типов малогабаритных циклических индукционных ускорителей электронов бетатронов, как источников излучения для НК, медицины и досмотровых систем
- Получила мировую известность благодаря исследованиям в области создания бетатронов и тепловых методов НК

Инженерная школа неразрушающего контроля и безопасности

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Основные направления научной деятельности

1. Томография

- Бетатронная томография
- Тепловая томография
- Ультразвуковая томография
- Рентгеновская томография
- Методы и средства НК (радиационный, ультразвуковой, тепловой, магнитный. вихретоковый, оптический, акустико-эмиссионный) обеспечение программное для визуализации обработки изображений при радиационного, проведении ультразвукового, оптического контроля и инспекционного досмотра грузов

3. Медицинское приборостроение

- Бетатронный комплекс для интраоперационной электронной лучевой терапии (ИОЭЛТ)
- Наноэлектроды для электрокардиографии
- Кардиоанализаторы

4. Другие разработки

- Многокомпонентные МЭМС гироскопы и акселерометры
- Установка стыковой сварки
- Инвертор сварочного тока
- Термотест

Зарубежные заказчики

- JME Ltd., Великобритания
- Smiths Heimann GmbH, Германия
- United Pioneer Technology Co. Ltd., Китай
- Varex Imaging inc., США
- InnoTech Systems Pvt. Ltd., Индия
- Pan Asiatic Technologies Sdn. Bhd, Малайзия

Российские заказчики

- AO «ИСС» имени академика М.Ф. Решетнёва»
- AO «Научно-производственное объединение им. С.А. Лавочкина»
- ГЦ ФГУП «ЦАГИ им. проф. Н.Е. Жуковского»
- ГКНПЦ имени М.В. Хруничева
- ПАО «Газпром»
- ФГУП «СибНИА им. С.А. Чаплыгина»
- АО «НПЦ «Полюс»
- ОАО «Композит»
- ООО «Газпром трансгаз Томск»
- АО «НИИЭФА им. Д.В. Ефремова»
- OAO «Томский электромеханический завод им. В.В. Вахрушева»
- ПАО «Транснефть»
- АО «Объединенная двигателестроительная корпорация»
- АО «Ачинский НПЗ ВНК»
- ПАО «Сатурн»
- ОАО «РЖД»
- ФГУП «РФЯЦ ВНИИТФ им. академика Е.И. Забабахина»

Инженерная школа неразрушающего контроля и безопасности Томского политехнического университета — единственный в мире разработчик и производитель малогабаритных циклических ускорителей электронов — бетатронов

Области применения бетатронов

- НК материалов и изделий в промышленности и строительстве
- Досмотр содержимого контейнеров и крупногабаритных транспортных средств
- Радиационная терапия быстрыми электронами широкого класса заболеваний онкологического и иного характера

Контроль свыше 150 мм

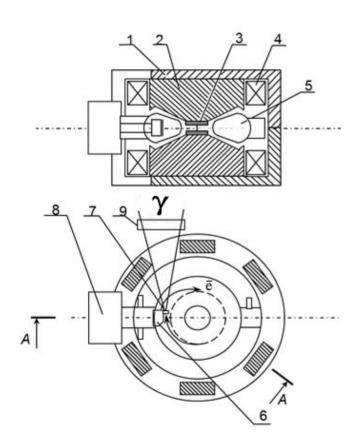
Для контроля свыше 150 мм существуют несколько типов источников (не лабораторных): изотопы и ускорители.

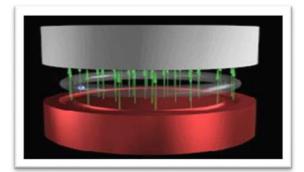
Изотопы имеют ряд ограничений в виду опасности транспортировки и эксплуатации.

Ускорители

- Линейные ускорители электронов
- Бетатрон

Преимущества бетатронов


- Применение как в полевых, так и в стационарных условиях
- Воздушное охлаждение, обеспечивающее непрерывный рабочий цикл
- Конструкция (малый вес, мобильность, работоспособность при произвольной ориентации) позволяет реализовать любые схемы контроля пространственно-сложных объектов
- Сплошной спектр излучения и малый размер фокусного пятна позволяют получить более контрастный, четкий и качественный рентгеновский снимок
- Не требует специальных разрешений на хранение и транспортировку (при отсутствии электрического питания полностью безопасен)
- Замена ускорительной камеры может быть проведена специалистами предприятия, использующего бетатрон в течение 45 минут
- Получение теневого (проекционного) изображения объекта контроля с функцией распознавания материалов методом дуальных энергий


Принцип работы бетатрона

и **резопасности**томский политехнический университет

Бетатрон - это циклический индукционный ускоритель, в котором энергия электронов увеличивается за счет вихревого электрического поля, создаваемого изменяющимся магнитным потоком, направленным перпендикулярно к плоскости орбиты частиц. Электроны двигаются по круговой орбите постоянного радиуса в нарастающем во времени по синусоидальному закону магнитном поле.

- 1 Магнитопровод
- 2 Полюс
- 3 Центральный вкладыш
- 4 Катушка Намагничивания
- 5 Вакуумная Ускорительная Камера
- 6 Инжектор
- 7 Мишень
- 8 Высоковольтный блок
- 9 Монитор излучения

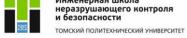
На сегодняшний день производятся бетатроны в двух исполнениях для обеспечения промышленной и транспортной безопасности:

- Дефектоскопические (с коническим пучком)
- Для сканирующих систем цифровой радиографии ССЦР (с веерным пучком) с возможностью реализации метод дуальных энергий для досмотровых систем с функцией распознавания материалов

На максимальные энергии от **2,5 МэВ до 10 МэВ** с частотами следования импульсов от 150 до 400 Гц.

Бетатрон относится к генерирующим источникам ионизирующего излучения (**нет питания – нет излучения**

Выпускаемые бетатроны



Характеристики

	Модель				
	МИБ-2,5	МИБ-4	МИБ-7,5	МИБ-9	МИБ-10
Максимальная энергия, МэВ	2,5	4,0	7,5	9,0	10
Мощность 1 м от мишени, Р/мин	0,7	2,5	8	25	20
Размер фокусного пятна, мм	0,2×1,2	0,2×1,5	0,2×2	0,3×3	0,3×3
Потребляемая мощность, кВт	1,0	2,0	2,9	3,1	3,6
Вес комплекта, кг	76	98	142	263	390
Вес излучателя, кг	31	55	102	183	290
Частота следования циклов ускорения, Гц	250	300	300	400	150
Максимальная просвечиваемая толщина, мм:					
сталь	120	200	280	350	450
бетон	500	800	1200	1500	1700
Относительная рентгенографическая чувствительность, %	1	1	0,6	1	1

Применение бетатронов

ЦЗЛ литейного цеха

Инспекция моста

Реконструкция ПЭВД

Технологический реактор НПЗ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Контроль литых изделий. Великобритания

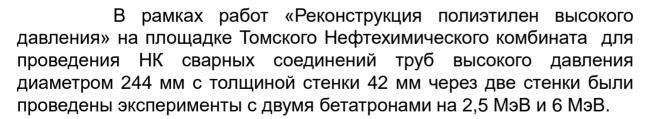
Контроль крупногабаритных объектов. Оман

Фрагмент запорной арматуры

Контроль барабана

Применение бетатронов

Контроль сварных соединений. Беларусь


Контроль крюка на плоскопанельный детектор. США

Контроль литья

Преимущества бетатрона на 2,5 МэВ перед 6 МэВ

- Малый вес и небольшие габариты
- Размер фокусного пятна
- Меньший размер от фокуса до края корпуса
- Больший угол раскрытия пучка
- Меньшая санитарная зона при проведения контроля

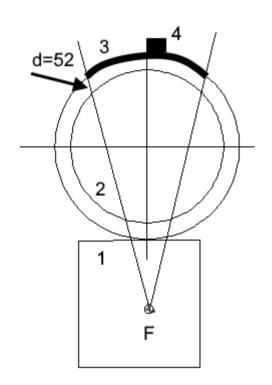
Недостатки

• Время экспозиции в 10 раз больше (540-800 сек). У 6 МэВ 60-70 сек

Размеры излучателя: 380х300х140 мм

Вес: 27 кг

Доза: 0,9 Р/мин @ 1 м


Размеры излучателя: 610х420х230 мм

Вес: 98 кг

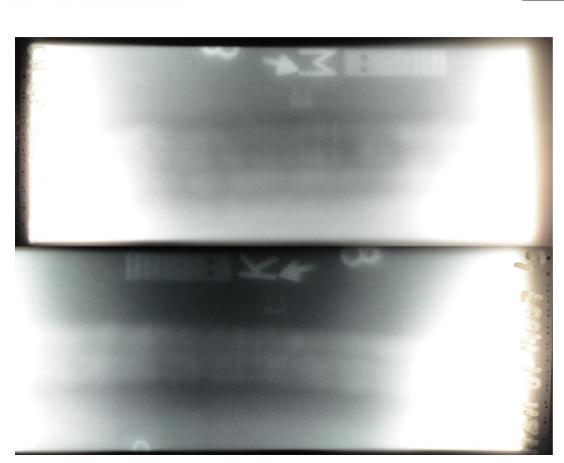
Доза: 7 Р/мин @ 1 м

НК сварных соединений ТомскНефтеХим

- 1 бетатрон 2,5 МэВ;
- 2 объект контроля;
- 3 пленка (0,5Pb-0,06Pb-D7-0,06Pb-1,0Pb)
- 4 выносной дозиметр бетатрона
- F 410 MM

Схема контроля черт.5г (ГОСТ 7512-82)

Марка стали 25CrMo4 (20Xм)


Контроль по ГОСТ 32569-2013

Чувствительность контроля по ГОСТ 7512-82 I-

класс (0,63 мм)

Количество экспозиции 5

Контролируемый участок 210 мм

Количество стыков РК \emptyset 244,5x42 – 102. Выявленные дефекты по РК: Aa - 397, Ab - 28, Ac - 88, Ca - 6, Fa - 24, Fb - 8. **ВИК** – 102 стыка, 8 исправить; **УК** – 28 стыка, 2 исправить, 1 вырезать. ПВК – 33 сделано, 2 исправить

Изделия литейного производства с переменной толщиной (75..280 мм) и сложной формой

После отбраковки и ремонта изделия было обнаружено несплавние

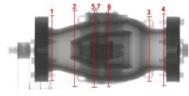
Инженерная школа неразрушающего контроля и безопасности

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

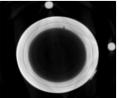
Система бетатронной томографии

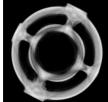
Назначение

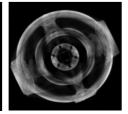
- Контроль литых изделий сложной формы
- Толщина контроля до 300 мм (по стали), разрешение до 0,5 мм
- 2D и 3D визуализация
- Отечественные детекторы и источник излучения (бетатрон 9 МэВ)

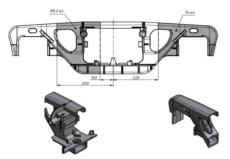

Основные технические характеристики

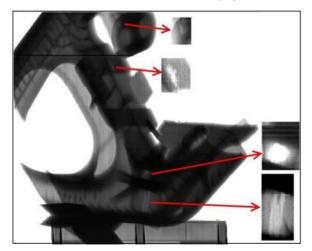
Энергия источника излучения, МэВ	49
Шаг изменения энергии, МэВ	0,5
Доза на расстоянии 1м, Р/мин	до 20
Высота сканируемого объекта, м	до 2,5
Размер кристалла детектора, мм	4×6×35
Разрешение в центре сканируемого объекта, мм	2
Разрешение при использовании линейного детектора X-scan 0.4iHE2-410M-ENET-S, мкм	200
Расстояние от источника излучения до линейки детекторов, м	4,2




Цифровая обработка радиографии



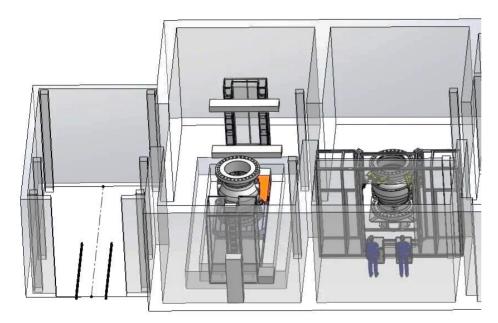

Томограммы сечений 1, 5, 6



Результаты НК боковых рам вагонных тележек

- Фрагментация боковой рамы
- Вес фрагмента 150 кг
- Максимальная толщина фрагмента стальной отливки до 300 мм
- Время сканирования образца до 20 секунд
- Экспозиция боковой рамы полностью занимает 2 мин

Теневые изображения фрагмента боковой рамы вагонной тележки (с различным расположением эталонов)



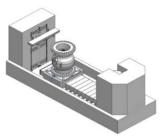
Вынесены предполагаемые дефекты после обработки изображения

Автоматизированный неразрущающой контроль

Концепция участка автоматизированного неразрушающего контроля

Назначение

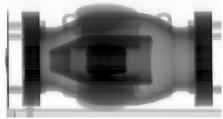
Проект «Разработка технологии интеллектуального производства ответственных пространственносложных фасонных деталей» (уникальный идентификатор проекта RFMEFI57817X0251) Выполняется в рамках ФЦП «ИиР 2014-2020». Индустриальный партнер ОАО «ТЭМЗ»


	запорная арматура
Объект контроля	клапанов магистральных
	газопроводов
Вес объекта контроля	от 60 кг до 10 тонн
Максимальный	
габарит объекта	3002500
контроля, мм	
Стоимооти просито	300 (150 млн. руб. субсидия,
Стоимость проекта, млн. руб.	150 млн. руб. средства
ινιι ιπ. ργο.	индустриального партнера)

Система рентгенографической томографии

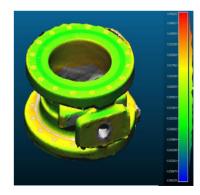
Назначение

Система используется для рентгенографического НК и томографии пространственно-сложных фасонных изделий весом от 60 кг до 10 тонн, максимальными габаритами от 300 до 2500 мм на различных производственных стадиях


Максимальная энергия, МэВ	9
Диапазон регулировки энергии с шагом 0,1 МэВ	29
Мощность 1 м от мишени, Р/мин	до 22
Размер фокусного пятна, м	0,3×2,0
Материал сцинтиллятора	CdWO₄
Количество отдельных детектирующих элементов в линейке формирования изображения, шт.	1280
Максимальная масса объекта контроля, кг	6010000
Диаметр объекта контроля, мм	3002500

Модель системы рентгеновской томографии

Внешний вид системы томографии


Назначение

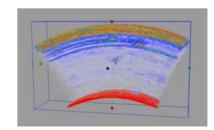
Система предназначена для топографии и проверки шероховатости поверхности пространственно-сложных фасонных изделий весом от 60 кг до 10 тонн, максимальными габаритами от 300 до 2500 мм на различных производственных стадиях

Разрешение, мкм	2
Точность, мкм	12
Скорость сканирования, точек/с	2000000
Количество степеней подвижности роботизированного манипулятора	6
Досягаемость роботизированного манипулятора, мм	1100
Точность позиционирования роботизированного манипулятора, мм	±0,03

Модель роботизированной системы контроля

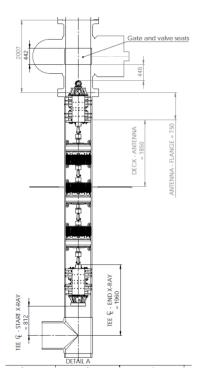
Результаты оптической топографии

Система ультразвуковой томографии

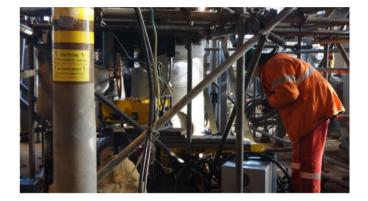

Назначение

Контроль целостности внутренней структуры пространственно-сложных фасонных изделий весом от 80 кг до 10 тонн, максимальными габаритами от 300 до 2500 мм на различных производственных стадиях

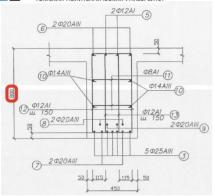
Частота, МГц	15
Габаритные размеры установочного стола (Д×Ш×В), мм	1800×1800×38
Максимальная нагрузка на планшайбу, кг	15000
Тип акустического контакта	локальный иммерсионный
Технология обработки ультразвуковых сигналов	цифровая фокусирующая решетка
Количество акустических каналов	2 (с возможностью мультиплексирования)
Масса объекта контроля, кг	6010000
Диаметр объекта контроля, мм	3002500



Внешний вид роботизированной системы контроля


Результаты ультразвуковой томографии

- Фрагмент SmartPlug
- Толщина стенки 40 мм
- Давление газа не менее 50 бар
- Контроль через две стенки
- Экспозиция менее 10 минут



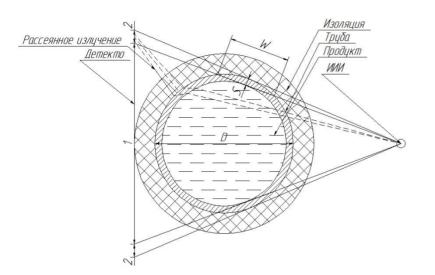
Сломаны ось и колесо

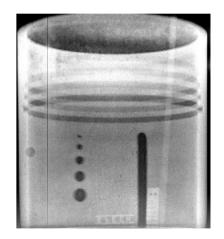
Инженерная школа неразрушающего контроля и безопасности

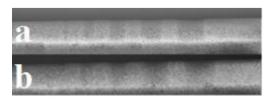
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Возможно проведение неразрушающего контроля бетона толщиной до 1 метра

- в бетонных — Определение системы армирования сооружениях
- Определение бетонной несплошностей в теле заливки
- Определение геометрических размеров арматурных стержней и их размещение




Объект контроля железобетонный постамент в сечении 800х450мм


Толщинометрия и инспекция в реальном времене

- Без выводы из эксплуатация и остановке технологического процесса
- С продуктом внутри
- Без снятия изоляции
- В режиме реального времени
- Достоверность и чувствительность контроля 0.2 мм

Сквозное отверстие Ø10, слева отверстия с шагом 2 мм

Объект контроля с искусственными несплошностями

ПРИГЛАШАЕМ К СОТРУДНИЧЕСТВУ!

Штейн Александр Михайлович

НАУЧНО-ПРОИЗВОДСТВЕННАЯ ЛАБОРАТОРИЯ РАДИАЦИОННЫЕ СИСТЕМЫ ДОСМОТРА И ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ

> Тел. сот. +7 913 800 9099 Тел. раб. +7 3822 701-777 (доб.2716)

> > E-mail: ndt@tpu.ru shteyn@tpu.ru